Fast-diffusion limit with large noise for systems of stochastic reaction-diffusion equations
نویسندگان
چکیده
منابع مشابه
Approximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملA Fast Solver for Systems of Reaction-Diffusion Equations
Here, u is a vector-valued function, u ≡ u(x, t) ∈ R, m is large, and the corresponding system of ODEs, ∂tu = F (x, t, u), is stiff. Typical examples arise in air pollution studies, where a is the given wind field and the nonlinear function F models the atmospheric chemistry. The time integration of Eq. (1) is best handled by the method of characteristics [1]. The problem is thus reduced to des...
متن کاملAlmost sure exponential stability of stochastic reaction diffusion systems with Markovian jump
The stochastic reaction diffusion systems may suffer sudden shocks, in order to explain this phenomena, we use Markovian jumps to model stochastic reaction diffusion systems. In this paper, we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps. Under some reasonable conditions, we show that the trivial solution of stocha...
متن کاملMacroscopic reduction for stochastic reaction-diffusion equations
The macroscopic behavior of dissipative stochastic partial differential equations usually can be described by a finite dimensional system. This article proves that a macroscopic reduced model may be constructed for stochastic reaction-diffusion equations with cubic nonlinearity by artificial separating the system into two distinct slow-fast time parts. An averaging method and a deviation estima...
متن کاملLarge deviations for invariant measures of stochastic reaction–diffusion systems with multiplicative noise and non-Lipschitz reaction term
In this paper we prove a large deviations principle for the invariant measures of a class of reaction–diffusion systems in bounded domains of Rd , d 1, perturbed by a noise of multiplicative type. We consider reaction terms which are not Lipschitzcontinuous and diffusion coefficients in front of the noise which are not bounded and may be degenerate. This covers for example the case of Ginzburg–...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Analysis and Applications
سال: 2016
ISSN: 0736-2994,1532-9356
DOI: 10.1080/07362994.2016.1197131